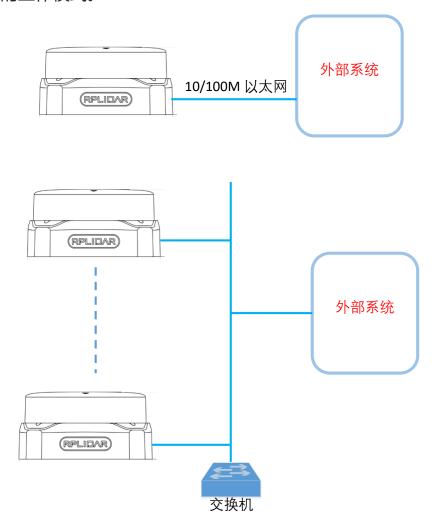

SLAMTEC LIDAR

激光扫描测距雷达

通讯接口协议与应用手册


适用于 LPX T1 系列和 LIDAR S 系列以太网版本

目录	1
SLAMTEC LIDAR 通讯简介	3
SDK 与示例程序	3
基本通讯协议	3
基本通讯模式	4
请求报文格式	6
应答报文格式	7
LIDAR 工作状态机制	9
主要状态与转换关系	9
扫描采样状态	10
扫描工作模式与采样频率	11
请求命令与数据获取	11
请求命令总览	11
停止扫描 (STOP) 命令请求	12
测距核心软重启(RESET)命令请求	12
开始扫描采样(SCAN)命令请求与回应数据格式	13
开始高速采样 (EXPRESS_SCAN)命令请求与回应数据格式	16
设备信息获取(GET_INFO)命令请求	22
设备健康状态获取(GET_HEALTH)命令请求	23
激光测距用时获取(GET_SAMPLERATE)命令请求	25
设备配置信息获取(GET_LIDAR_CONF)命令请求	26
设备转速控制(MOTOR_SPEED_CTRL)命令请求	30
使用举例	31
获取扫描测距数据典型工作流程	31
计算 LIDAR 的扫描转速	32
修订历史	33
附录	34
图表索引	34

外部系统通过以太网与 SLAMTEC LIDAR(简称 LIDAR)进行连接,采用 UDP 协议进行通讯, LIDAR 作为 UDP 服务器。本文档定义的通讯协议是雷达通讯协议,即 UDP 协议的用户数据的报文格式,通过本文档定义的通讯协议,外部系统可以实时获取 LIDAR 的扫描数据、设备信息、设备健康状态。并且通过相关命令调整 LIDAR 的工作模式。

图表 1-1 LIDAR 与外部系统连接拓扑图

请参考 LIDAR 相关数据手册获取通讯接口的定义。

SDK 与示例程序

为了方便客户加快基于 LIDAR 的开发, SLAMTEC 提供封装了 LIDAR 通讯操作的 SDK 和示例程序。SDK 实现了本手册中描述的所有 LIDAR 功能的驱动以及协议、数据结构定义信息。开源 SDK 可以从 GitHub 上获得:https://github.com/slamtec/LIDAR_sdk。

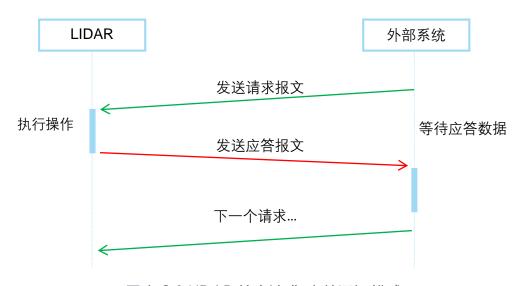
SDK 采用跨平台设计,可以支持多种平台,包括 Windows、Linux、MacOS 甚至不运行操作系统的系统当中。

请参考 SDK 使用手册了解详情。

基本通讯模式

与 LIDAR 进行的通讯采用非文本形式的二进制数据报文进行,且每个数据报文均具有统一的报头数据格式。

每次的通讯过程均由外部系统 (MCU、PC 主机等) 发起, LIDAR 的测距核心在通电工作后,并不会主动向通讯接口另一侧的外部系统发送数据。

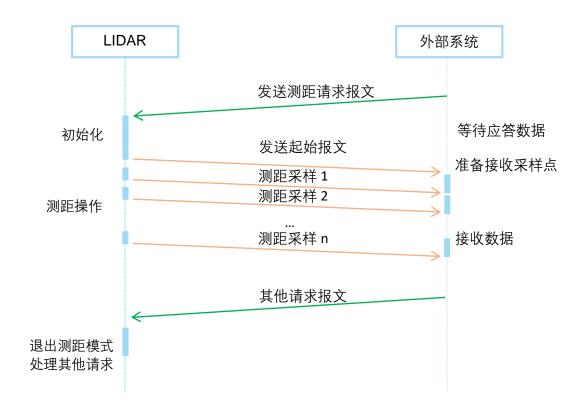

这里将由外部系统发送至 LIDAR 测距核心的数据报文称为: **请求(request)**,将由 LIDAR 测距核心发送回外部系统的数据报文称为: **应答(response)。**

在收到来自外部系统的请求数据报文后,LIDAR 将执行对应的处理。如果对应的请求期望LIDAR 做出回应,则会发送应答报文。LIDAR 的扫描测距操作同样采用这里定义的请求/应答模式。只有在外部系统发送了开始扫描测距请求后,LIDAR 才会开始扫描工作,并连续发送应答数据至外部系统。

按照不同的请求类型, LIDAR 具有三种不同的请求/应答模式:

标准的单次请求-单次应答模式

该模式用于外部系统向 LIDAR 获取相关信息的通讯中。LIDAR 在收到这类请求后,将在必要的操作后通过单个应答包发送外部系统需要的数据。

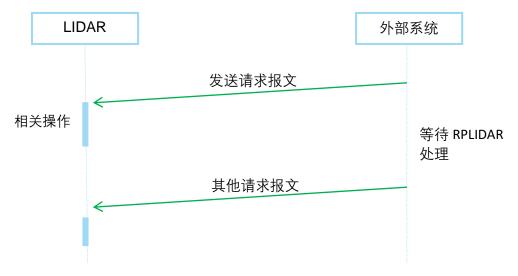

图表 2-1 LIDAR 单次请求-应答通讯模式

外部系统应避免在该通讯模式中,LIDAR 还未对前一次请求做出应答前再次发送请求。否则第二次的请求数据可能将被LIDAR 丢弃。

单次请求-多次应答模式

该通讯模式用于 LIDAR 进行扫描测距的模式下。外部系统在发送开始扫描的请

求后, LIDAR 将开始连续的扫描测距。在每次测距操作完成后,对应的测距采样点的信息(距离、角度等)将通过一个独立应答包的形式发送至外部系统。在这个模式下,外部系统只需要发送单次的请求,并开始连续接受来自 LIDAR 的多个应答数据文报。


图表 2-2 LIDAR 单次请求-多次应答的通讯模式

当工作在多次应答通讯模式时,外部系统可以通过发送停止请求或者其他类型的请求模式要求 LIDAR 离开多次应答模式。在离开多次应答模式后,LIDAR 将继续处理本次的外部系统请求。

如果在发送了测距请求报文后,外部系统再次发送测距请求报文,LIDAR 也将先退出扫描测距模式,离开多次应答模式。并再一次按照外部系统要求进入扫描测距模式。

单次请求/无应答模式

对于停止扫描、重启测距核心这类请求命令,LIDAR 采用单次请求,但不做应答的通讯模式。此时外部系统需要在发送请求后等待一定的时间,待LIDAR 完成了上一次请求操作后方可继续执行下一次请求。否则第二次的请求将可能被LIDAR 丟弃。

图表 2-3 LIDAR 单次请求-无应答模式

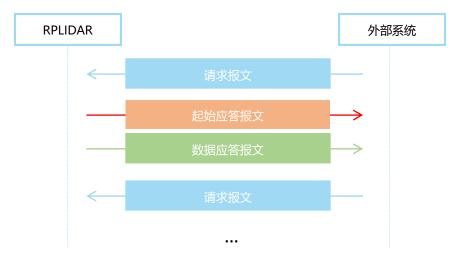
请求报文格式

所有从外部系统发送至 LIDAR 的请求报文均采用如下的格式进行发送,字节发送顺序上采用小字端(little endian)模式。

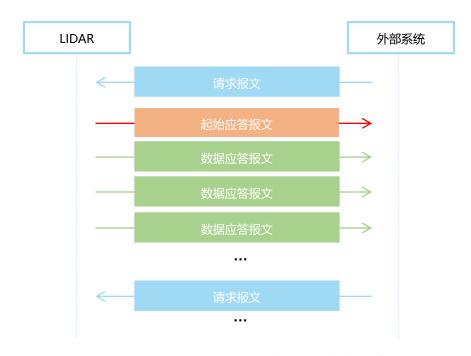
图表 2-4 LIDAR 请求报文发送格式

每个请求报文均以固定的 0xA5 作为开始字节, LIDAR 将以此识别一个新的请求报文的开头。此外, 所有请求报文都必须包含一个字节长度的请求命令字段。如果该请求命令需要额外附带有其他数据,则请求报文还需要附带一个字节的负载数据长度信息、负载数据本身以及一个字节的校验和作为结尾。

其中校验和的值按照如下公式计算得出:


checksum = $0 \oplus 0xA5 \oplus CmdType \oplus PayloadSize \oplus Payload[0] \oplus ... \oplus Payload[n]$

注意: 发送时序要求


一个完整的请求报文必须在 5 秒内完全发送至 LIDAR。如果当前正在发送的请求报文已经花费了 5 秒以上,LIDAR 协议栈将认为通讯超时。此时该请求报文将被强制丢弃。

应答报文格式

应答报文分为**起始应答报文**和**数据应答报文**两类。如果当前接收到的请求报文需要发送应答报文,则 LIDAR 首先发送起始应答报文,随后按照通讯模式,发送一次或者任意多次的数据应答报文。在一次请求/应答的通讯过程中,起始应答报文只会发送一次,它用以描述后续的数据应答报文的相关信息。

图表 2-5 LIDAR 单次请求-单次应答模式

图表 2-6 LIDAR 单次请求-多次应答模式

起始应答报文均使用如下的固定结构:

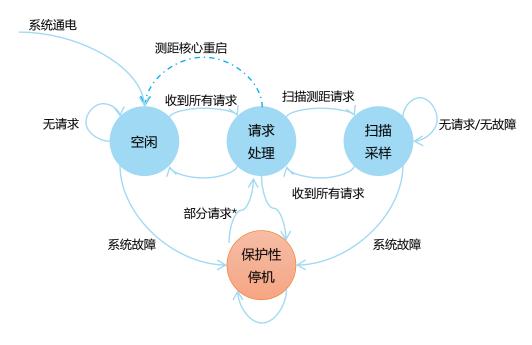
起始标志 1	起始标志 2	数据应答报文长度	应答模式	数据类型
1byte (0xA5)	1byte (0x5A)	30bits	2bits	1byte

发送顺序

图表 2-7 LIDAR 起始应答报文结构

其中起始标志为 2 个字节的固定数据: 0xA5 0x5A。外部系统可以以此判断起始 应答报文的开始部分。数据应答报文长度为 30bits 的数据,记录了随后发送的 **单个**数据应答报文的长度。2bits 的应答模式字段描述了接下来的数据应答报文的发送模式,取值如下:

应答模式取值	模式描述
0x0	单次应答模式,LIDAR 只发送一次数据应答报文
0x1	多次应答模式,LIDAR 将会发送一个或者多个应答报文
0x2	保留, 暂未定义
0x3	保留, 暂未定义


图表 2-8 LIDAR 数据应答报文取值

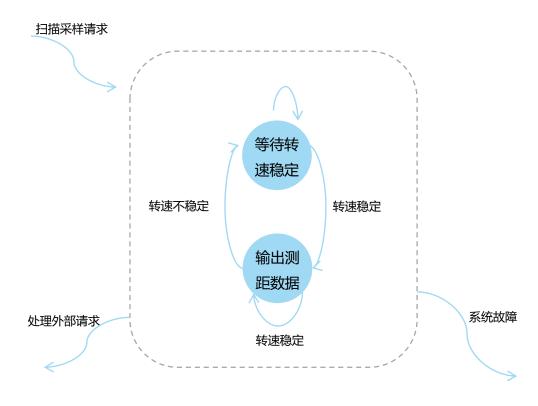
数据类型表示了数据应答报文发送内容的类型,它与 LIDAR 接收到的请求报文 类型所对应。外部系统可以通过起始应答报文的信息来确定后续数据应答报文 的接收策略。

与起始应答报文不同,数据应答报文没有统一的格式。不同的数据应答报文的格式请参考后文具体的应答类型描述。对于同一类数据应答报文,他们具有相同的长度以及结构定义。

主要状态与转换关系

LIDAR 包含了4个主要状态:空闲、扫描采样、请求处理以及保护性停机。其转换关系如下图所示。

图表 3-1 LIDAR 主要状态转换关系示意图


空闲模式是 LIDAR 测距核心供电开始工作或者重启后进入的模式。此时测距系统和激光器都在关闭模式,系统工作于节能状态。当 LIDAR 进入扫描采样模式时,测距系统和激光器开启,LIDAR 将不断进行测距采样工作,并将测距数据通过应答报文发送至外部系统。

当 LIDAR 在上述状态下接收到外部系统请求后,均会离开当前工作模式,进入请求处理状态。在请求处理状态中,LIDAR 不会进行测距采样工作,也不会对外发送任何数据。在请求处理完成后,对于需要应答的请求,LIDAR 会首先发送起始应答报文,随后按照请求的类型,进入空闲、扫描采样或者保护停机模式。

如果当 LIDAR 检测到自身工作异常后,则会关闭自身工作,进入保护性停机模式。此时外部系统仍旧可以与 LIDAR 进行通讯,查询其工作状态等信息,但无法进行扫描测距。当发生保护停机后,请求处理状态始终将返回到保护停机状态。

扫描采样状态

当工作在扫描采样状态时,LIDAR 将实时检测扫描电机的运行状况。只有当扫描电机的转速趋于稳定时,LIDAR 才会对外部系统发送测距采样数据。

图表 3-2 LIDAR 扫描采样状态的内部工作模式

扫描工作模式与采样频率

模式名称	描述	最高采样频率	最大测量距离	特性
Standard	传统模式	S2: 16000	S2:16 米	
DenseBoost	密实模式	S2:32000	S2:30 米	降低通信带宽需求,牺牲信号 质量数据输出
Sensitivity	灵敏度优先模式	S2:32000 T1M4:60000	S2:30 米 T1M4: 40 米	充分保证数据输出的完整性, 通信带宽要求较高

图表 3-3 几个典型的扫描工作模式特性

为了确定当前 LIDAR 支持的所有工作模式,可以使用命令 GET_LIDAR_CONF 来获取当前设备所支持的所有模式,以及各模式下设备得实际工作性能。同时,也可以获得针对当前设备特性所特别调优的典型工作模式。

在绝大多数情况下,请使用思岚提供的开源 SDK 来进行这部分操作。并不推荐直接进行协议通讯进行操作。

请求命令总览

下表列出了被 LIDAR 支持的请求命令,他们的具体使用与 LIDAR 的回应数据格式将在后文分别介绍。

命令名	值	负载	应答模式	LIDAR 执行操作	支持固件版 本
STOP	0x25	无	无	离开扫描采样模式,进入空闲状态	1.0
RESET	0x40	无	应 答	测距核心软重启	1.0
SCAN	0x20	无	多	请求进入扫描采样状态	1.0
EXPRESS_SCAN	0x82	有	次 应 答	请求进入扫描采样状态,并工作在 最高采样频率下	1.0
GET_INFO	0x50	无	单	获取设备序列号等信息	1.0
GET_HEALTH	0x52	无	次	获取设备健康状态	1.0

GET_SAMPLERATE	0x59	无	应	获取单次激光测距的用时	1.0
GET_LIDAR_CONF	0x84	有	答	按地址获取雷达配置信息	1.0

图表 4-1 LIDAR 支持的请求命令

停止扫描 (STOP) 命令请求

请求报文: A5 25

在外部系统发送了请求命令字段为停止扫描(STOP, 0x25)的请求报文后, LIDAR 将退出正在进行的扫描采样状态,关闭测距系统和激光器,进入空闲模式。如果 LIDAR 先前已经工作在空闲状态或者保护停机状态下,则该命令则会被忽略。

LIDAR 不会为该请求发送回应报文。建议外部系统需要在发送该请求命令后, 延迟 100ms 以上时间后发送下一次请求。

图表 4-2 STOP 请求的通讯时序

测距核心软重启(RESET)命令请求

请求报文: A5 40

在外部系统发送了 RESET 请求后,测距核心将进行软重启操作。软重启将测距系统恢复到与通电后一样的状态下。当 LIDAR 因为故障进入了保护性停机后,外部系统就可以尝试发送 RESET 命令尝试将 LIDAR 恢复至正常工作状态。

LIDAR 不会为该请求发送回应报文。建议外部系统需要在发送该请求命令后, 延迟 1s 以上时间后发送下一次请求。

图表 4-3 RESET 请求的通讯时序

开始扫描采样(SCAN)命令请求与回应数据格式

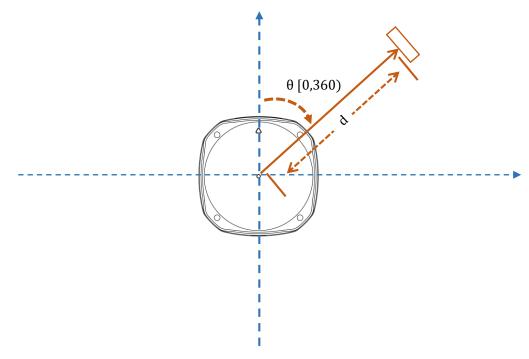
注意:对支持 16khz 以及更高采样频率的设备在该命令下将降低自身采样频率,并且超过 16米的测量数据将会被丢弃,请使用 EXPRESS_SCAN 获得最佳性能。本命令仅支持 Legacy 工作模式。

LIDAR 工作在空闲状态时,在外部系统发送了该请求后,将开始进入测距采样。每个测距采样点将使用数据应答报文发送至外部系统。如果 LIDAR 先前已经工作在测距采样状态,则 LIDAR 首先将停止正在进行的测距采样功能,并重新开始新一轮的测距采样操作。当 LIDAR 进入保护性停机后,该命令请求将被忽略。

LIDAR 会在接受该请求后立刻发送起始应答报文,表示 LIDAR 接受了进入扫描采样状态的请求。扫描采样的数据应答报文将在 LIDAR 的扫描电机稳定旋转后不断的发送给外部系统,直到外部系统发送新的请求而停止扫描采样或者 LIDAR 出现故障为止。

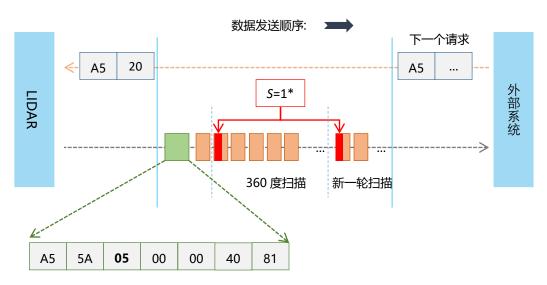
数据应答报文格式

LIDAR 使用如下的数据应答报文结构:


图表 4-4 开始扫描采样(SCAN)命令回应数据格式

LIDAR 在扫描测据中会将每个采样点通过上述结构的数据应答报文发送至外部系统。其中各字段定义如下:

字段名	描述	举例/备注
S	扫描起始标志位。	S=1 表示新的一圈 360 度扫描的 开始。
Ī	扫描起始标志位的取反,始终有 $\bar{S}=!S$	可用于数据应答报文起始字节的 判断和数据校验
С	校验位,永远为 1	可用于数据应答报文起始字节的 判断和数据校验
quality	采样点信号质量	与激光接收信号质量相关
angle_q6	测距点相对于 LIDAR 朝向夹角(角度表示,[0-360) 。使用定点小数表示	具体定义见示意图。 实际角度= angle_q6/64.0 Deg
distance_q2	测距点相对于 LIDAR 的距离(毫米单位)。使用定点小数表示 当采集到无效点时,该字段为零。	具体定义见示意图。 实际距离 = distance_q2/4.0 mm


图表 4-5 LIDAR 数据应答报文字段定义

夹角与距离值几何定义如下图所示:

图表 4-6 LIDAR 测距时夹角与距离值几何定义

下图展示了外部系统在发送扫描采样请求后的通讯情况:

图表 4-7 外部系统发送扫描采样请求后的通讯情况

* 在每一圈的第一个扫描点, S 会被置为 1, 其余的点, S 均为 0。

开始高速采样 (EXPRESS_SCAN)命令请求与回应数据格式

配套的开源 SDK 已对本协议进行了良好的封装,会根据用户需求自动切换工作模式,建议使用 SDK 的相关 API,报文格式参考图标 2-4 和 2-7。

82 05 WM 00 00 00 00 C **A5** 请求报文: 密实版本(对应 DenseBoost 模式): 54 40 85 A5 5A 00 00 起始应答: 数据应答类型: 多次 数据应答长度: 84 bytes 高质量版本(对应 Sensitivity 模式): 0D00 40 5A 03 83 Α5 起始应答: 数据应答类型: 多次 数据应答长度: 781 bytes

LIDAR 在收到该请求命令后将进入测距采样模式,与 SCAN 命令所不同的是,该命令将使得 LIDAR 使用尽可能快的采样频率工作。对于可以支持 4K 及以上采样频率的设备,外部系统需要通过 GET_LIDAR_CONF 获得最佳的采样测距频率和测距量程的工作模式,并使用该指令使雷达工作在最佳模式,并按照上述频率对外输出测距采样点。

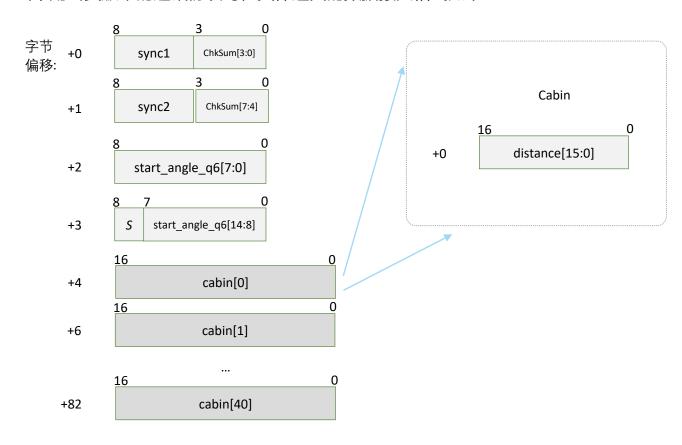
外部系统可事先通过请求命令 GET_LIDAR_CONF 得相关配置字段以获得 LIDAR 所支持的全部工作模式以及对应的采样频率、测量距离等情况,也可使用 GET_SAMPLERATE 获工作于标准 SCAN 模式以及 EXPRESS_SCAN 模式下所对应的单次激光测距采集用时信息。

LIDAR 采用与 SCAN 命令相同的状态机和处理逻辑对待本命令,但使用了与标准 SCAN 命令不同的应答数据格式。

请求报文的负载数据格式:

EXPRESS_SCAN 命令需要包含 5 个字节的负载数据,其结构如下表示。该负载数据不可以被省略。

图表 4-8 高速采样模式请求报文的数据格式


上述数据负载中个字段定义如下:

字段名	描述	举例/备注
		当数值为 0 时,将采用传统版 本得定义进行工作。
working_mode	LIDAR 所需要进入的扫描工作模式	当数值为通过 GET_LIDAR_CONF 获取的其 他数值时,将采用所对应的扫 描工作模式进行工作,并且按 照预先设定采用传统版本或者 扩展版本得通讯协议。
Reserved	保留字段,必须为 0	为今后协议扩充保留,必须为 0。

图表 4-9 高速采样模式请求报文的数据负载字段定义

数据应答报文格式-密实版本:

当采用密实版本的通讯协议时,具体返回的数据报文格式如下:

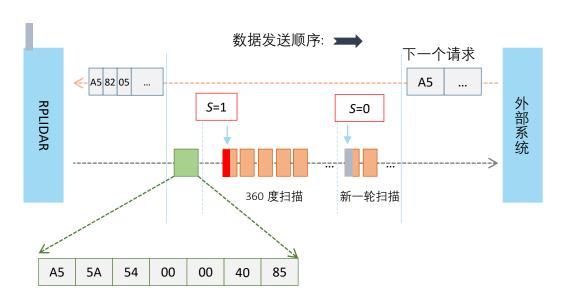
图表 4-10 高速扫描测距输出的数据应答报文格式

当工作在密实版本的高速采样模式下, LIDAR 将循环发送上述格式的数据应答报文, 用于向外部系统输出测距数据。该报文中包含了 40 组结构相同的子结构, 也称为 Cabin, 每个 Cabin 为 2 字节的具有特定结构的数据体, 对应了 1 组测距采样数据的距离。因此, 一条高速扫描测距的应答报文将带有 40 个测距采样数据点。

下表列出了上图数据结构中每个字段的含义:

字段名	描述	举例/备注
sync1	数据包起始同步标志 1。永远为 0xA	用于外部系统判断一个新的应答报 文的开始
sync2	数据包起始同步标志 2。永远为 0x5	用于外部系统判断一个新的应答报 文的开始
start_angle_q6	当前应答报文中各测距数据角度的 基准值,采用 q6 格式的定点小数, 单位为角度,范围[0-360)	请参考后文了解对应测距数据角度 值的计算方式,采用与标准 SCAN 命 令一致的坐标系定义。实际角度 =start_angle_q6/64.0 Deg

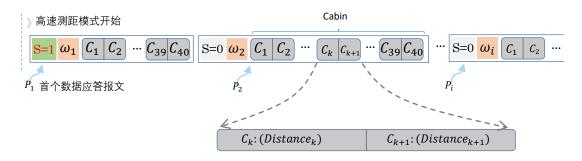
S	起始应答报文标志	当设置为 1 时,表示当前应答报文 是本轮测距采样中的第一个。
ChkSum	对整个应答报文数据计算得到的校 验和。通过对报文数据进行按字节 依次异或运算得到。	可用于对一条应答报文数据有效性进行判断
cabin	2 字节的测距数据结构体,包含 1 组测距数据的距离和角度信息。 一个数据应答报文中包含了 40 组 cabin 数据。	具体定义见下表。


图表 4-11 高速扫描测距输出的数据应答报文中 Cabin 字段定义

下表列出了一个 cabin 数据结构的各字段定义:

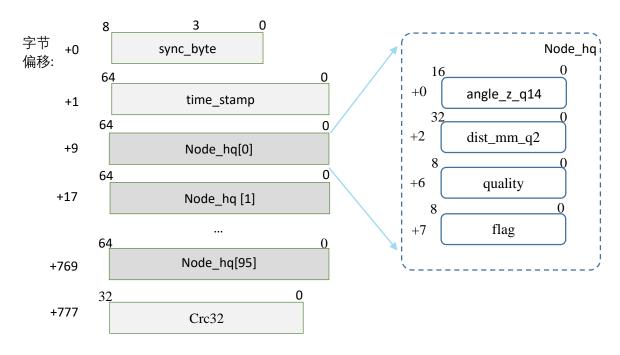
字段名	描述	举例/备注
distance	测距采样的距离数据。 当数值为 0 时,表示对应的测距采样点无效。	单位为毫米。

图表 4-12 cabin 数据结构 (密实版本) 各字段定义


下图展示了外部系统在发送高速采样请求后的通讯情况:

图表 4-13 外部系统在发送高速采样请求后的通讯情况

数据解析-密实版本:


使用密实版本时,每一个测距采样数据存放在一个 cabin 结构体中。其中,距离值直接对应了该组测距采样实际测得的距离值。被测物体相对于 LIDAR 的夹角数据需要与本应答报文的 start_angle_q6 进行运算得到。具体计算方式如下所示:

图表 4-14 高速测距模式(密实版本)中发送出的应答报文抽象表示

数据应答报文格式-高质量版本:

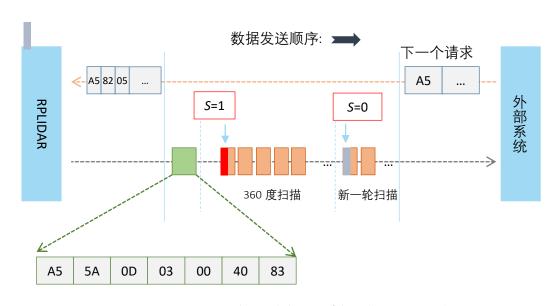
当采用高质量版本的通讯协议时,具体返回的数据报文格式如下:

图表 4-15 高速扫描测距输出的数据应答报文格式(高质量版本)

当工作在高质量版本的高速采样模式下,LIDAR 将循环发送上述格式的数据应答报文,用于向外部系统输出测距数据。该报文中包含了 96 组结构相同的子结构,也称为 Node_hq,每个 Node_hq为 8 字节的具有特定结构的数据体,对应了 1 组测距采样数据的角度、距离、信号质量和标志。因此,一条高速扫描测距的应答报文将带有 96 个测距采样数据点。

下表列出了上图数据结构中每个字段的含义:

字段名	描述	举例/备注
sync_byte	数据包起始同步标志,永远为 0xA5	用于外部系统判断一个新的应答报 文的开始
time_stamp	以雷达内部时间标识该数据采集的 时刻点	用于外部系统进行时间同步,单位 uS
Node_hq	64字节的测距数据结构体,包含 1组测距数据。,一个数据应答报文中包含了 96 组 Node_hq 数据。	具体定义见下表。
Crc32	crc32 校验	


图表 4-16 高速扫描测距输出的数据应答报文中 Cabin 字段定义

下表列出了一个 Node_hq 数据结构的各字段定义:

字段名	描述	举例/备注	
angle_z_q14	采用 z 表示法得角度数据,1z = 0.5pi = 90deg	angle=angle_z_q14 * 90.0f / 16384.0f	
dist_mm_q2	测距数据	distance = dist_mm_q2/4	
quality	回波信号强度	0~255	
flag	标志,用户只需关注同步标志 S	S=flag & 0x1	

图表 4-17 Node_hq 数据结构各字段定义

下图展示了外部系统在发送高速采样请求后的通讯情况:


图表 4-18 外部系统在发送高速采样请求后的通讯情况

设备信息获取(GET_INFO)命令请求

LIDAR 在收到外部系统发送该请求后,将自身诸如序列号、固件/硬件版本等信 息作为应答发送回外部系统。

数据应答报文格式:

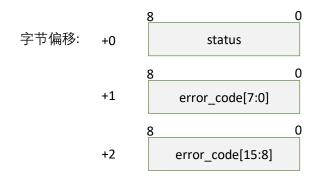

图表 4-19 设备信息获取对应的数据应答报文

各字段定义:

字段名	描述	举例/备注
	正在使用的 LIDAR 型号 对 LIDAR A1 的早期设备,该字段为 0。	
MajorModel	LIDAR <u>主型</u> 号	对 LIDAR A2 以及后期的 LIDAR A1 设备,该数值为实际主型号。
		例如,LIDAR A2M4 对应 MajorModel 为 2。
		22 / 35

SubModel	LIDAR 子型号	例如,LIDAR A2M4 对应的 SubModel 为 4。
firmware_minor	固件版本号,次版本号	固件版本中的小数部分
firmware_major	固件版本号,主版本号	固件版本中的整数部分
hardware	硬件版本号	
serialnumber[16]	16字节的唯一序列号	文本表示上,低字节数据在前,高字节部分在后

图表 4-20 设备信息获取对应的数据应答报文各字段定义


图表 4-21 GET_INFO 请求的通讯时序

设备健康状态获取(GET_HEALTH)命令请求

外部系统可以通过发送该请求了解 LIDAR 测距核心的工作状态。如果 LIDAR 因为内部故障进入了保护性停机模式,则会在该请求的应答中发送对应的错误代号。

数据应答报文格式:

图表 4-22 设备健康状态请求对应的数据应答报文

上述报文中各字段的含义见下表:

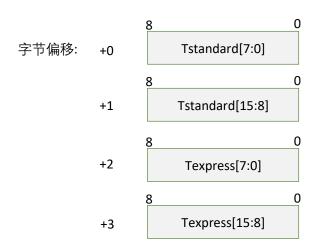
字段名	描述	举例/备注
	LIDAR 健康状态	取值定义:
		0: 状态良好
status		1: 警告
		2: 错误
		当测距核心检测到有潜在错误但不足以导致 LIDAR 进入保护性停机时,该字段将被设为警告状态。此时LIDAR 仍旧可能正常工作。
		当该字段为错误时,LIDAR 已进入保护性停机状态
error_code	具体的警告/错误代码	当出现警告或者错误状态时,具体的错误代号会被记录在该字段当中。

图表 4-23 设备健康状态请求对应的数据应答报文字段定义

当外部系统检测到 LIDAR 进入保护性停机模式后,可以尝试发送重启(RESET)命令尝试重启 LIDAR 解决问题。如果 LIDAR 多次进入保护性停机模式,则表示内部系统可能出现了不可恢复性损伤。

激光测距用时获取(GET_SAMPLERATE)命令请求

 请求报文:
 A5
 59


 起始应答:
 A5
 5A
 4
 00
 00
 15

 数据应答类型:
 单次
 数据应答长度:
 4 bytes

外部系统可以通过发送该请求了解 LIDAR 测距核心的分别在 Legacy 以及 Express 扫描工作模式下,单次激光测距的用时。对于其他的工作模式的情况,需要使用 GET LIDAR CONF 获取。

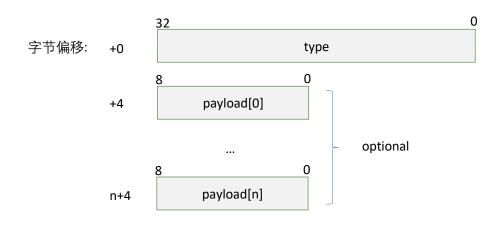
通过该命令请求,外部系统可精确计算 LIDAR 的当前旋转速度。

数据应答报文格式:

图表 4-24 激光测距用时获取请求对应的数据应答报文

上述报文中各字段的含义见下表:

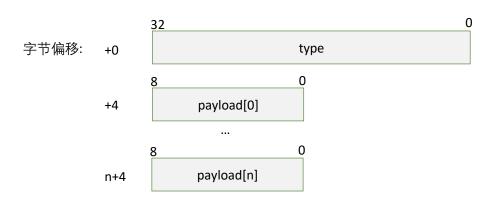
字段名	描述	举例/备注	
Tstandard	在标准扫描模式(SCAN)下,LIDAR 测距核 心进行单次激光测距的耗时 单位:微秒(uS)	可用于 LIDAR 使用 SCAN 命令运作 时的旋转速度检测	
Texpress	在高速采样模式(EXPRESS_SCAN)下, LIDAR 测距核心进行单次激光测距的耗时 单位:微秒(uS)	可用于 LIDAR 使用 EXPRESS_SCAN 命令运作时的旋转 速度检测	


图表 4-25 激光测距用时获取请求对应的数据应答报文字段定义

设备配置信息获取(GET_LIDAR_CONF)命令请求

通过该命令,外部系统可以获取 LIDAR 的特性配置参数数据。具体需要获取的配置参数类型通过请求报文的负载数据的相关字段进行指定:

数据请求报文格式:


图表 4-26 设备配置信息获取命令请求对应的数据请求报文

上述报文中各字段的含义见下表:

字段名	描述	举例/备注
type	需要获取的配置数据的字段类型	具体的可用类型由后文表格给出
Payload[n]	在请求特定配置字段时需要附加的请求数 据	可选部分,可以省去。由具体的请 求字段类型决定

图表 4-27 设备配置信息获取命令请求报文数据结构描述

数据应答报文格式:

图表 4-28 设备配置信息获取命令请求对应的数据应答报文

上述报文中各字段的含义见下表:

字段名	描述	举例/备注
type	返回的设备配置数据的对应配置字段值	与对应的请求字段的对应数据 相同
Payload[n]	根据特定的配置字段以及请求数据所返回的 配置数据	具体数据格式和含义由对应的 配置字段决定

图表 4-29 设备配置信息获取命令应答报文数据结构描述

基本数据类型定义:

该命令采用如下表定义的基本数据类型或者它们的组合作为请求和应答数据的负载部分。所有数据采用小字端(little-endian)存储。

类型名	描述	长度(字节)
u8, u16, u32, u64	无符号整数,字长由其类型名的数字后缀表示(比特位数量)	1, 2, 4, 8
s8, s16, s32, s64	有符号整数,字长由其类型名的数字后缀表示(比特位数量)	1, 2, 4, 8
String	以 0 结尾的字符串,采用 UTF-8 编码,不包含 BOM 头	不定长度
Float	采用 IEEE 754 规范的单精度浮点数	4
Double	采用 IEEE 754 规范的双精度浮点数	8

图表 4-30 协议采用的基本数据类型和定义

可用的配置数据字段类型:

类型值	描述	请求数据	应答数据
0x70	LIDAR_CONF_SCAN_MODE_COUNT 获取设备所支持的扫描工作模式 ID 最大值	无	u16
0x71	LIDAR_CONF_SCAN_MODE_US_PER_SAMPLE 获取给定扫描工作模式下的采样频率	u16	u32
0x74	LIDAR_CONF_SCAN_MODE_MAX_DISTANCE 获取给定扫描工作模式下的最大测距半径	u16	u32
0x75	LIDAR_CONF_SCAN_MODE_ANS_TYPE 获取给定扫描工作模式下 EXPRESS_SCAN 命令 请求采用的协议版本	u16	u8
0x7C	LIDAR_CONF_SCAN_MODE_TYPICAL 获取当前设备推荐的扫描工作模式 ID	无	u16
0x7F	LIDAR_CONF_SCAN_MODE_NAME 获取给定扫描工作模式所对应的可供阅读的名称	u16	String

图表 4-31 所支持的设备配置信息类型字段数值和含义

LIDAR_CONF_SCAN_MODE_COUNT (0x70) 配置字段描述

当请求该配置字段后, LIDAR 将返回带有当前设备所支持的扫描工作模式数量的应答包。LIDAR 设备的扫描工作模式 ID 从 0 开始编码, 到当前字段所返回的 ID-1 结束。

例如,该配置字段请求后范围的数据是 2,则表示当前 LIDAR 设备支持 2 种扫描工作模式,分别是 0,1。外部系统可进一步通过其他的配置字段请求获取每一个扫描工作模式 ID 所对应的特性情况。

LIDAR_CONF_SCAN_MODE_US_PER_SAMPLE (0x71) 配置字段描述

要正确请求该配置字段,外部系统首先应指定所要获取信息的扫描工作模式 ID,将它填入请求包的 payload 域内。

当请求包合法且所指定的扫描工作模式 ID 被当前设备支持后, LIDAR 将返回该工作模式下设备得激光测距用时。其数值的物理单位是微秒 (uS)。

LIDAR CONF SCAN MODE MAX DISTANCE (0x74) 配置字段描述

要正确请求该配置字段,外部系统首先应指定所要获取信息的扫描工作模式 ID,将它填入请求包的 payload 域内。

当请求包合法且所指定的扫描工作模式 ID 被当前设备支持后, LIDAR 将返回该工作模式下设备所支持的最大测量半径距离。其数值的物理单位是米,并采用 a8 定点小数方式存储。

LIDAR_CONF_SCAN_MODE_ANS_TYPE (0x75) 配置字段描述

要正确请求该配置字段,外部系统首先应指定所要获取信息的扫描工作模式 ID,将它填入请求包的 payload 域内。

当请求包合法且所指定的扫描工作模式 ID 被当前设备支持后, LIDAR 将返回外部系统通过 EXPRESS_SCAN 命令请求采用的协议版本。其数值等同于起始应答报文的数据类型字段。

典型的数据类型定义如下:

- 0x81 该模式将采用扫描采样(SCAN)命令对应的应答数据类型回传扫描测距数据
- 0x82 该模式将采用扫描采样(EXPRESS_SCAN)命令对应的传统版本格式回 传扫描测距数据
- 0x83 该模式将采用扫描采样(EXPRESS_SCAN)命令对应的扩展版本格式回 传扫描测距数据

LIDAR_CONF_SCAN_MODE_TYPICAL (0x7C) 配置字段描述

该请求将返回当前 LIDAR 设备所推荐的最佳扫描工作模式的 ID 值。建议除非在特别了解当前 LIDAR 设备所支持工作模式的特点前,采用该字段返回的工作模式 ID 驱动雷达采集数据以得到将为可靠的性能。

LIDAR_CONF_SCAN_MODE_NAME (0x7F) 配置字段描述

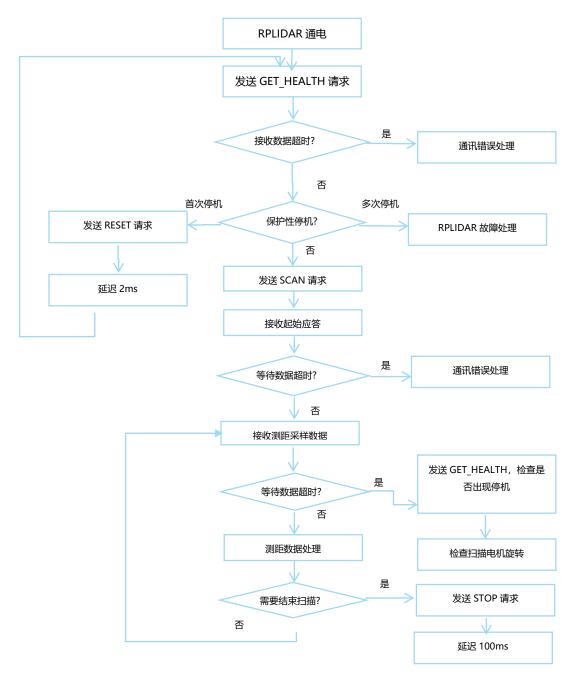
该请求将返回当前 LIDAR 设备所推荐的最佳扫描工作模式的 ID 值。建议除非在特别了解当前 LIDAR 设备所支持工作模式的特点前,采用该字段返回的工作模式 ID 驱动雷达采集数据以得到将为可靠的性能。

当请求包合法且所指定的扫描工作模式 ID 被当前设备支持后,LIDAR 将返回所请求的工作模式 ID 所对应方便人阅读理解的对当前工作模式的文本表达。

设备转速控制(MOTOR_SPEED_CTRL)命令请求

请求报文:	A5	A8	02	Rpm	С
-------	----	----	----	-----	---

外部系统可以通过发送该请求设置 LIDAR 测距核心的旋转速度 (Rpm), 且支持在线调速。另外, 当设置转速为 0 时, LIDAR 测距核心会进入空闲状态。


数据请求报文格式:

图表 4-32 设备转速控制命令请求对应的数据请求报文

获取扫描测距数据典型工作流程

推荐外部系统按照如下过程开启 LIDAR 的测距采样模式,并获取扫描测距数据。 在向 LIDAR 发送 SCAN 请求前,建议首先发送 GET_HEALTH 请求检查 LIDAR 是 否出现保护性停机情况,若出现停机,则尝试进行 RESET。

图表 5-1 开启 LIDAR 测距采样模式参考方法

具体的实现过程请参考配套 SDK 的代码。

计算 LIDAR 的扫描转速

大部分情况下外部系统无需关心 LIDAR 的实际扫描速度。LIDAR 内部具有扫描转速检测系统,可以实时的适应当前的转动速度,保证测距结果的准确。

外部系统可以自 LIDAR 开始测距采样后,记录两个起始标志位为 1(S=1)的数据 应答报文的接收时间间隔ΔT。它表示了当前 LIDAR 测距核心旋转一周的时间。则实际转速可用下列公式得出:

$$RPM = \frac{1}{\Lambda T} * 60$$

通过上述计算,外部系统可将转速信息用作扫描电机的控制反馈。

修订历史

日期		内容	
2022-4-22	初稿		

图表索引

图表 1-1 LIDAR 与外部系统通讯示意图	3
图表 2-1 LIDAR 单次请求-应答通讯模式	4
图表 2-2 LIDAR 单次请求-多次应答的通讯模式	5
图表 2-3 LIDAR 单次请求-无应答模式	6
图表 2-4 LIDAR 请求报文发送格式	6
图表 2-5 LIDAR 单次请求-单次应答模式	7
图表 2-6 LIDAR 单次请求-多次应答模式	7
图表 2-7 LIDAR 起始应答报文结构	8
图表 2-8 LIDAR 数据应答报文取值	8
图表 3-1 LIDAR 主要状态转换关系示意图	9
图表 3-2 LIDAR 扫描采样状态的内部工作模式	10
图表 3-3 几个典型的扫描工作模式特性	11
图表 4-1 LIDAR 支持的请求命令	12
图表 4-2 STOP 请求的通讯时序	12
图表 4-3 RESET 请求的通讯时序	13
图表 4-4 开始扫描采样(SCAN)命令回应数据格式	14
图表 4-5 LIDAR 数据应答报文字段定义	14
图表 4-6 LIDAR 测距时夹角与距离值几何定义	15
图表 4-7 外部系统发送扫描采样请求后的通讯情况	15
图表 4-8 高速采样模式请求报文的数据负载格式	17
图表 4-9 高速采样模式请求报文的数据负载结构定义	17
图表 4-10 高速扫描测距输出的数据应答报文格式	错误!未定义书签。
图表 4-11 高速扫描测距输出的数据应答报文中 CABIN 字段定义	19
图表 4-12 CABIN 数据结构(密实版本)各字段定义	19
图表 4-13 外部系统在发送高速采样请求后的通讯情况	19
图表 4-14 高速测距模式(密实版本)中发送出的应答报文抽象表示	错误!未定义书签。
图表 4-15 高速扫描测距输出的数据应答报文格式(高质量版本)	错误!未定义书签。
图表 4-16 高速扫描测距输出的数据应答报文中 CABIN 字段定义	
图表 4-17 NODE_HQ 数据结构各字段定义	错误!未定义书签。
图表 4-18 外部系统在发送高速采样请求后的通讯情况	18
图表 4-19 设备信息获取对应的数据应答报文	19
图表 4-20 设备信息获取对应的数据应答报文各字段定义	
图表 4-21 GET_INFO 请求的通讯时序	
图表 4-22 设备健康状态请求对应的数据应答报文	
图表 4-23 设备健康状态请求对应的数据应答报文字段定义	20
图表 4-24 激光测距用时获取请求对应的数据应答报文	22

<u>SL</u>\<u>MTEC</u>

图表 4-25 激光测距用时获取请求对应的数据应答报文字段定义	25
图表 4-26 设备配置信息获取命令请求对应的数据请求报文	26
图表 4-27 设备配置信息获取命令请求报文数据结构描述	26
图表 4-28 设备配置信息获取命令请求对应的数据应答报文	27
图表 4-29 设备配置信息获取命令应答报文数据结构描述	27
图表 4-30 协议采用的基本数据类型和定义	27
图表 4-31 所支持的设备配置信息类型字段数值和含义	28
图表 4-32 设备转速控制命令请求对应的数据请求报文	26
图表 5-1 开启 LIDAR 测距采样模式参考方法	31